0,4x^2+30=400/x+2

Simple and best practice solution for 0,4x^2+30=400/x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0,4x^2+30=400/x+2 equation:



0.4x^2+30=400/x+2
We move all terms to the left:
0.4x^2+30-(400/x+2)=0
Domain of the equation: x+2)!=0
x∈R
We get rid of parentheses
0.4x^2-400/x-2+30=0
We multiply all the terms by the denominator
(0.4x^2)*x-2*x+30*x-400=0
We add all the numbers together, and all the variables
28x+(0.4x^2)*x-400=0
We multiply parentheses
0x^2+28x-400=0
We add all the numbers together, and all the variables
x^2+28x-400=0
a = 1; b = 28; c = -400;
Δ = b2-4ac
Δ = 282-4·1·(-400)
Δ = 2384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2384}=\sqrt{16*149}=\sqrt{16}*\sqrt{149}=4\sqrt{149}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{149}}{2*1}=\frac{-28-4\sqrt{149}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{149}}{2*1}=\frac{-28+4\sqrt{149}}{2} $

See similar equations:

| |x+3|=|2x+1| | | 11w=5940w= | | 9^4z-3=100 | | (2x+7)/4=((x-7)/8)+(23/8) | | 2-x/2=5x-10 | | 3/4x+9=1/6x+20/3 | | 2-x/2=5x-10=0 | | 2-x/2-5x-10=0 | | 3/4x+9=1/6x+62/3 | | 12x^2=7x-12 | | 2x/2=5x-10 | | n(n-3)=434 | | .6x=2x+48 | | 4x=(360÷4) | | 14×(x-3)=98 | | 2x/2-5x-10=0 | | ​​13(21−3a)=6−a | | x2+2x+15=0 | | x-7=-7x-30 | | 5x-10=15x-6 | | 10/60=x100 | | (5x)/(2x-1)=2 | | 41x+14=11x+110 | | (3x-8)/(2x)=1 | | X^2-5x=55 | | 9+6x10/2=90 | | (2,2x+6)/10x=0,221 | | (2,2x+6)/10x=0,23 | | (2,2x+6)/10x=0,22 | | (2,2x+6)/10x=0,21 | | (2,2x+6)/10x=0,25 | | 2(3x=5)=-44 |

Equations solver categories